We wish to acknowledge the support of the Phillips Petroleum Company for support in the form of a fellowship to WCD. The authors also wish to acknowledge helpful discussion with P. N. Swepston.

References

Al-Najuar, I. M., Green, M. \& Sarhan, J. K. (1980). Inorg. Chim. Acta, 44, L213-L214.
Berthou, J., Elguero, J. \& Rerat, C. (1970). Acta Cryst. B26, 1880-1881.
Black, M., Mais, R. H. B. \& Owston, P. G. (1969). Acta Cryst. B25, 1753-1759.
Carmichael, J. W., Chan, n., Cordes, A. W., Fair, C. K. \& Johnson, D. A. (1972). Inorg. Chem. 11, 1117-1120.
Caruso, F., Spagna, R. \& Zambonelli, L. (1978). J. Cryst. Mol. Struct. 8, 47-57.

Caruso, F., Spagna, R. \& Zambonelli, L. (1980). Acta Cryst. B36, 713-715.
Colamarino, P. \& Orioli, P. L. (1975). J. Chem. Soc. Dalton Trans. pp. 1656-1659.
Deese, W. C., Johnson, D. A. \& Cordes, A. W. (1981). Inorg. Chem. 20, 1516-1522.
Graves, B. J., Hodgson, D. J., van Kralingen, C. G. \& Reedidk, J. (1978). Inorg. Chem. 17, 3007-3011.
Hartley, F. R. (1972). Angew. Chem. Int. Ed. Engl. 11 , 597-606.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Johnson, D. A. \& Deese, W. C. (1981). Unpublished results.
Johnson, D. A., Deese, W. C. \& Howe, M. L. (1980). Inorg. Nucl. Chem. Lett. 16, 53-56.
Melanson, R. \& Rochon, F. D. (1976). Can. J. Chem. 54, 1002.

Pimentel, G. C. \& McClellan, A. L. (1960). The Hydrogen Bond, p. 290. San Francisco: Freeman.

Acta Cryst. (1981). B37, 2223-2225

The Structure of the Trifluoroacetate of the (3-Oxo-2-butyl)(pyridine)mercury(II) Cation

By Joan Halfpenny
Department of Chemistry, University of Durham, South Road, Durham DH 1 3LE, England
and R. W. H. Small
Department of Chemistry, University of Lancaster, Lancaster LA 1 4YA, England

(Received 20 March 1981; accepted 22 May 1981)

Abstract

Hg}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}\right)\right]\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right), \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Hg}\) $\mathrm{NO}^{+} . \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}^{-}$, triclinic, $P \overline{1}, \quad a=9.81(1), \quad b=$ $9.20(1), c=10.04$ (1) $\AA, \quad a=117.7(1), \quad \beta=$ 61.72 (6), $\gamma=110.7(1)^{\circ}, D_{m}=2.245, D_{c}=2.22 \mathrm{Mg}$ m^{-3} with $Z=2 ; R=0.049$ for 1741 diffractom-eter-measured intensities. Hg forms two covalent bonds: to the 3 -oxo-2-butyl group, $\mathrm{Hg}-\mathrm{C}=$ $2 \cdot 12$ (2) \AA, and to pyridine, $\mathrm{Hg}-\mathrm{N}=2 \cdot 16$ (1) \AA, with $\angle \mathrm{C}-\mathrm{Hg}-\mathrm{N}=174(1)^{\circ}$. In addition there are contacts from Hg to trifluoroacetate $\mathrm{O}, 2.77$ (2), 2.82(1), 2.85 (2) \AA, and to the 3 -oxo-2-butyl $\mathrm{O}, 2.89$ (1) \AA. The distances indicate an ionic structure.

Introduction. This compound is one of a series of complexes of nitrogen donor ligands with mercury (II) trifluoroacetate and its derivatives. Material supplied by Dr A. J. Bloodworth was recrystallized from dichloromethane to give oblique prisms showing the forms $\{011\},\{100\}$ and $\{010\}$. With $\mathrm{Cu} K<$ radiation $(\lambda=$ $1.542 \AA$), the Laue group and cell dimensions were obtained from Weissenberg photographs with crystals
mounted successively about \mathbf{a}, \mathbf{b} and \mathbf{c}. Intensity data on 1944 unique reflections were collected with graphitemonochromatized Mo Ka radiation ($\lambda=0.7107 \AA$) on the Stoe STADI-2 automatic two-circle diffractometer, from a well developed crystal with dimensions $0.16 \times$ $0.06 \times 0.20 \mathrm{~mm}$. Data from the layers $l=0-9$ within the range $20 \leq 40^{\circ}$ were processed with an initial data reduction program and all further calculations were performed with SHELX (Sheldrick, 1976). Absorption corrections ($\mu=10.67 \mathrm{~mm}^{-1}$) were applied and reflections with $F<6 \sigma(F)$ were eliminated, leaving 1741 values for the structure determination and refinement. Statistical tests indicated a centric intensity distribution. Assuming the space group $P \overline{1}$, the Patterson map was used to determine the position of Hg . These coordinates were used to phase an ($F_{o}-F_{c}$) map to give the positions of the remaining non- H atoms. Refinement of atomic parameters proceeded with anisotropic $U_{i j}$ for Hg and isotropic U for C, N and O . Scale factors for the data collection layers were also refined at an intermediate stage. When refinement was

Table 1. Atomic positions $\left(\times 10^{3}, \times 10^{4}\right.$ for Hg$)$ and temperature factors $\left(\AA^{2} \times 10^{3}, \times 10^{4}\right.$ for Hg)

	x	y	z	U or $U_{\text {eq }}^{*}$
	x	$y(2)$	$317(2)$	$57(4)$
$\mathrm{C}(1)$	$-136(2)$	$127(2)$	$181(2)$	$65(4)$
$\mathrm{C}(2)$	$-84(2)$	$-35(2)$	$159(2)$	$84(6)$
$\mathrm{C}(3)$	$61(2)$	$-81(2)$	$1590(2)$	$70(5)$
$\mathrm{C}(4)$	$-305(2)$	$139(2)$	350	
$\mathrm{C}(5)$	$229(2)$	$536(2)$	$37(2)$	$52(4)$
$\mathrm{C}(6)$	$351(2)$	$654(2)$	$-25(2)$	$68(5)$
$\mathrm{C}(7)$	$463(2)$	$740(2)$	$45(2)$	$73(5)$
$\mathrm{C}(8)$	$453(2)$	$708(2)$	$170(2)$	$72(5)$
$\mathrm{C}(9)$	$327(2)$	$592(2)$	$225(2)$	$59(4)$
$\mathrm{C}(10)$	$-180(2)$	$591(2)$	$408(2)$	$54(4)$
$\mathrm{C}(11)$	$-295(3)$	$713(3)$	$492(3)$	$96(7)$
N	$219(1)$	$509(1)$	$160(1)$	$46(3)$
$\mathrm{O}(1)$	$-144(1)$	$514(2)$	$261(2)$	$74(3)$
$\mathrm{O}(2)$	$-139(1)$	$578(1)$	$502(2)$	$71(3)$
$\mathrm{O}(3)$	$-160(1)$	$-125(2)$	$95(2)$	$73(3)$
$\mathrm{F}(1)$	$-353(2)$	$710(3)$	$403(2)$	170^{*}
$\mathrm{~F}(2)$	$-210(3)$	$871(2)$	$519(3)$	181^{*}
$\mathrm{~F}(3)$	$-395(2)$	$714(3)$	$627(2)$	212^{*}
Hg	$317(1)$	$3243(1)$	$2453(1)$	505^{*}

${ }_{U_{33}}^{*} U_{\text {eq }}$ values from diagonalized matrix $U_{i i}: U_{\text {eq }}=\frac{1}{3}\left(U_{11}+U_{22}+\right.$
terminated at $R=0.049$ the shifts on all parameters were less than 0.05 of the e.s.d. and there were no significant features on the $\left(F_{o}-F_{c}\right)$ map. Atomic scattering factors for Hg , including anomalous scattering, were taken from Cromer \& Mann (1968) and Cromer \& Liberman (1970); those for all other atoms were from International Tables for X-ray Crystallography (1962). Final atomic coordinates and isotropic temperature factors are listed in Table 1.*

Discussion. Bond distances within one unit of structure are shown in Fig. 1 (bond angles for atoms other than Hg are included in the supplementary data). The pyridine ligand and the 3-oxo-2-butyl group are covalently bound to Hg and the trifluoroacetate, which has been displaced, is unusually distant from Hg . The $\mathrm{Hg}-\mathrm{O}(1)$ and $\mathrm{Hg}-\mathrm{O}(2)$ distances are considerably in excess of typical covalent values (normally within the range $2 \cdot 0-2 \cdot 3 \AA$) and must indicate that the structure is ionic. The ionic $\mathrm{Hg}-\mathrm{O}$ distance has been previously estimated (Halfpenny \& Small, 1978) at $2 \cdot 54 \AA$. There is no obvious reason for the longer distances found in this structure; screening of Hg by attached ligands would not appear to be sufficient to prohibit a closer approach. It is of interest that the $\mathrm{Hg}-\mathrm{O}(3)^{\prime}$ contact (Table 2) between neighbouring cations is not significantly greater than $\mathrm{Hg}-\mathrm{O}(1), \mathrm{Hg}-\mathrm{O}(2)$ between cation

[^0]

Fig. 1. View of one unit of structure of the trifluoroacetate of the (3-oxo-2-butyl)(pyridine)mercury(II) cation. (Distances in A.)

Table 2. Coordination around Hg
Bond lengths (\AA)

$\mathrm{Hg}-\mathrm{N} \quad 2 \cdot 16$ (1)	$\mathrm{Hg}-\mathrm{O}(1)$	2.77 (2) $\mathrm{Hg}-\mathrm{O}(3)^{\prime}$	2.89 (1)
$\mathrm{Hg}-\mathrm{C}(1) \quad 2 \cdot 12(2)$	$\mathrm{Hg}-\mathrm{O}(2)$	2.82 (1) $\mathrm{Hg}-\mathrm{O}(2)^{\prime \prime}$	$2 \cdot 85$ (2)
Angles (${ }^{\circ}$)			
$\mathrm{N}-\mathrm{Hg}-\mathrm{O}(1)$	$80 \cdot 6$ (5)	$\mathrm{C}(1)-\mathrm{Hg}-\mathrm{O}(1)$	104.6 (5)
$\mathrm{N}-\mathrm{Hg}-\mathrm{O}(2)$	90.1(4)	$\mathrm{C}(1)-\mathrm{Hg}-\mathrm{O}(2)$	95.1(5)
$\mathrm{N}-\mathrm{Hg}-\mathrm{O}(2)^{\prime \prime}$	88.0 (5)	$\mathrm{C}(1)-\mathrm{Hg}-\mathrm{O}(2)^{\prime \prime}$	91.1 (7)
$\mathrm{N}-\mathrm{Hg}-\mathrm{O}(3)^{\prime}$	80.5 (3)	$\mathrm{C}(1)-\mathrm{Hg}-\mathrm{O}(3)^{\prime}$	95.9 (5)
$\mathrm{O}(1)-\mathrm{Hg}-\mathrm{O}(2)$	47.0 (5)	$\mathrm{C}(1)-\mathrm{Hg}-\mathrm{N}$	174.4 (6)
$\mathrm{O}(2)-\mathrm{Hg}-\mathrm{O}(2)^{\prime \prime}$	75.6 (4)	$\mathrm{O}(3)^{\prime}-\mathrm{Hg} \quad \mathrm{O}(1)$	104.5 (5)
$\mathrm{O}(2)^{\prime \prime}-\mathrm{Hg}-\mathrm{O}(3)^{\prime}$	$130 \cdot 4$ (4)		

Symmetry code: (') $-x,-y,-z ;\left({ }^{\prime \prime}\right)-x, 1-y, 1-z$.
and anion. The coordination around Hg is summarized in Table 2. The effective sixfold coordination is completed by an additional $\mathrm{Hg}-\mathrm{O}(2)^{\prime \prime}$ contact; however, in terms of the definition of 'characteristic' coordination (Grdenić, 1965), in this structure Hg would be deemed to be linear two-covalent.

Within the cation, Hg is coplanar with the pyridine within the limits of error. The torsion angle $\mathrm{Hg}-$ $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3), 110(1)^{\circ}$, is larger than that in (chloromercurio)acetaldehyde (98°) (Halfpenny \& Small, 1979), with no intramolecular $\mathrm{Hg}-\mathrm{O}$ interaction. The group $\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3) \mathrm{O}(3)$ is planar to within the limits of error. The large $U_{i j}$ values of \mathbf{F} atoms (reflected in the large $U_{\text {eq }}$, Table 1) are a typical feature of all trifluoroacetate groups in $\mathrm{Hg}^{\text {II }}$ trifluoroacetate derivatives examined le.g. in bis(pyridine)mercury(II) bis(trifluoroacetate) (Halfpenny, Small \& Thorpe, 1978); tris(pyridine)mercury(II) bis(trifluoroacetate) (Halfpenny \& Small, 1978); phenyl(pyridine)mercury(II) trifluoroacetate (Halfpenny \& Small, 1980)| and appear to indicate some persistent disorder of the CF_{3} group.

JH thanks Professor J. C. Bevington, Chemistry Department, University of Lancaster, for providing research facilities.

$$
\left|\mathrm{Hg}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}\right)\right|\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)
$$

Halfpenny, J. \& Small, R. W. H. (1979). Acta Cryst. B35, 1239-1241.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Grdenić, D. (1965). Q. Rev. Chem. Soc. 19, 303-328.
Halfpenny, J. \& Small, R. W. H. (1978). Acta Cryst. B34, 3758-3760.

Halfpenny, J. \& Small, R. W. H. (1980). Acta Cryst. B36, 938-940.
Halfpenny, J., Small, R. W. H. \& Thorpe, F. G. (1978). Acta Cryst. B34, 3075-3077.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Sheldrick, G. M. (1976). SHELX. A program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1981). B37, 2225-2227

Structure of Dichloro(1,4,7,10-tetraoxa-13,16-dithiacy clooctadecane-S,S')mercury(II)Mercury Dichloride

By N. K. Dalley
Department of Chemistry and the Thermochemical Institute, * Brigham Young University, Provo, Utah 84602, USA
and S. B. Larson
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA

(Received 10 February 1981; accepted 27 May 1981)

Abstract

Hg}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}\right) \mathrm{Cl}_{2}\right] . \mathrm{HgCl}_{2}, M_{r}=839 \cdot 3\), triclinic, $P \overline{1}, a=8.410(2), b=11.351$ (9), $c=$ 12.347 (6) $\AA, \quad \alpha=92.48$ (5), $\beta=94.52$ (3), $\gamma=$ $105.66(5)^{\circ}, V=1128.8(11) \AA^{3}, Z=2, D_{o}=2.43$, $D_{c}=2.46 \mathrm{Mg} \mathrm{m}^{-3} . R=0.058, R_{w}=0.063$ for 2113 independent data. The crystal structure consists of one HgCl_{2} unit coordinated to a bidentate macrocyclic ligand and a second HgCl_{2} unit which does not interact with an organic ligand. Only the S atoms of the organic ligand interact with the HgCl_{2} unit resulting in a distorted tetrahedral geometry.

Introduction. The complex was prepared by mixing an aqueous solution of the ligand with a large excess of HgO dissolved in concentrated HCl . Chemical analysis of the resulting crystals indicated that there was more than one Hg for each ligand. The crystallographic study was initiated to determine the chemical composition, stoichiometry and coordination of the material. A small, nearly spherical crystal with an average diameter of 0.17 mm was mounted on a Syntex $P \overline{1}$ autodiffractometer. The lattice parameters given in the Abstract were determined by a leastsquares refinement of 132θ values. Intensity statistics and the fact that $Z=2$ suggested that the space group was $P 1$. This choice of space group was confirmed by the subsequent solution of the structure. Intensity data were collected using graphite-monochromated Mo $K \alpha$

[^1]0567-7408/81/122225-03\$01.00
radiation $(\lambda=0.71073 \AA)$. The data were recorded with a scintillation counter. Five check reflections which were measured every 95 reflections showed no significant change. A total of 2113 independent data points were recorded for $2 \theta \leq 40^{\circ}(\sin \theta / \lambda=$ $0.482 \AA^{-1}$). These data included 321 reflections which were considered unobserved as $I<2 \sigma_{I} ; \sigma_{I}$ was based on counting statistics. Absorption corrections for a spherical crystal were applied to the data ($\mu=15.6$ mm^{-1}); the correction factor ranged from 1.04 to $1 \cdot 10$.

The trial structure was obtained by the heavy-atom technique. Positions for the H atoms were calculated from geometrical considerations; the $\mathrm{C}-\mathrm{H}$ bond length was assumed to be $1.04 \AA$. The structure was refined using ORFLS (Busing, Martin \& Levy, 1962), a full-matrix least-squares procedure. Positional and anisotropic thermal parameters of all non-hydrogen atoms were refined. No attempt was made to refine H parameters. The refinement was considered complete when all change/error ratios were less than 0.05 . At that point the R value was 0.058 and the weighted R value using unit weights was 0.063 . The goodness-of-fit term was 2.5 with $m=2113$ and $n=217$. All data were included in the refinement. The final positional parameters are listed in Table 1.* Scattering-factor

[^2]
[^0]: * Lists of structure factors, anisotropic thermal parameters and bond angles around non Hg atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36196 ($12 \mathrm{pp}$.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square. Chester CHI 2HU, England.

[^1]: * Contribution No. 247.

[^2]: \dagger Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36199 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 (c) 1981 International Union of Crystallography

